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1 Introduction

Tunneling of particles through a potential barrier is a paradigmatic quantum mechanical

process [1, 2]. A particle may cross a potential barrier of finite height and thickness because

it can penetrate into classically forbidden regions with finite probability in agreement with

Heisenberg’s uncertainty principle. Accordingly, the amplitude for the tunneling process is

controlled by the Planck constant ~, the height ∆E and width ∆x of the potential barrier,

∼ exp(−
√

2m∆E∆x/~).

Classical field theory of suitably interacting fields corresponding to different particle

species allows for a different way to penetrate, or more precisely circumnavigate, a barrier.

A classical field excitation, i.e., an on-shell particle, can transmute or oscillate into a

different on-shell particle species that does not (or only very weakly) interact with the

barrier. Behind the barrier, the particle then reconverts into the original species. This

process is depicted in figure 1 and forms the basis [3] of so-called light-shining-through-a-

wall experiments [4] that can be used to search for axions [3] and other light particles [5, 6].

This phenomenon is only an apparent tunneling process, as it does not require an excitation

to penetrate into a classically forbidden region. Since the intermediate particles are real

on-shell excitations and do not interact with the barrier, height and width of the original

barrier do not matter.
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Figure 1. Diagram depicting a classical process for a penetration of the barrier via conversion into

a real particle that interacts only very weakly with the barrier.

Figure 2. Diagram depicting “tunneling of the 3rd kind”. The photon splits into a virtual pair of

particle and antiparticle which traverse the wall and recombine into a photon.

In this note, we study a generalization of this process allowed by quantum field theory

in which the intermediate particle(s) crossing the barrier are not real but virtual. For

example, the initial particle could split into a virtual and necessarily off-shell particle-

antiparticle pair which then recombines behind the barrier as depicted in figure 2. Strictly

speaking, the barrier does not represent a classically forbidden region for the intermediate

particle, as it does not significantly interact with the barrier. This is a similarity with

the tunneling in classical field theory described above. Nevertheless, energy-momentum

conservation requires the intermediate states to go off shell into a classically forbidden

state which is similar to standard quantum mechanical tunneling. As the intermediate

particles do not interact with the barrier, the height of the barrier does not matter. The

width of the barrier, however, matters because the virtuality of the intermediate particles

typically goes along with a characteristic length scale.

As a concrete example of this “tunneling of the 3rd kind”, we study the case of a photon

splitting into a pair of particles with a tiny electric charge, so-called minicharged particles,

in sections 2, 3. The barrier can be thought of as a mirror or, alternatively, an opaque

– 2 –
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Figure 3. In a magnetic background field, tunneling of the 3rd kind can occur via the effective field-

induced interaction between photons and neutrinos [7] (we have depicted the electron propagator in

the background field by a double line). In this case, the neutrinos play the role of the particles which

do not interact with the barrier. Using dimensional arguments one can estimate this effect to be

of order ∼ (α2G2

F B2ω4/m4
e)

2F (d, mν , ω) . 10−130F (d, mν , ω) where the function F parameterizes

the dependence on the wall thickness d and the neutrino mass mν and the right hand side holds for

ω ∼ 1 eV and magnetic fields in the 1 T range.

wall. If the charges of the intermediate particles are small enough, these minicharged

particles have a tiny cross section with the atoms in the mirror and consequently simply pass

through the wall. By contrast, the analogous process with electrons does not work, because

electrons, too, would interact with the mirror/wall and would be stopped. Moreover, as we

shall see below, for photon frequencies below the mass of the created virtual particles the

process is exponentially suppressed. Another possibility within the standard model would

be the conversion of the photon into a neutrino-antineutrino pair, for instance, as can be

stimulated by a magnetic field, see figure 3. But since neutrinos couple to photons only very

indirectly, this process is highly suppressed. Therefore, the standard model background

for the corresponding light-shining-through-a-wall signal is very small and tunneling of the

3rd kind can serve as a tool to search for physics beyond the standard model in the form of

light minicharged particles. The latter arise naturally and consistently1 in many extensions

of the standard model based on field and string theory [8, 10].

A particularly interesting type of experiment to search for a light-shining-through-a-

wall effect caused by tunneling of the 3rd kind is the “superconducting box” experiment

proposed in [11] in which one searches for magnetic fields leaking into a volume shielded

by a superconductor. We will look at this option in section 4.2 and estimate the sensitivity

for such an experiment.

2 Setting

Let us identify the ingredients for constructing the transition amplitude and probability

for a particle to go through the wall via tunneling of the 3rd kind as depicted in figure 2.

To be explicit, we concentrate on the case of a photon fluctuating into two minicharged

particles. The generalization to other types of particles is, however, straightforward.

1In theories with kinetic mixing [8] minicharged particles are indeed consistent with the existence of

magnetic monopoles [9].
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Including quantum effects, the effective Lagrangian for a propagating photon is

given by:

L[A] = −1

4
Fµν(x)Fµν(x) − 1

2

∫

x′

Aµ(x)Πµν(x, x′)Aν(x
′), (2.1)

where Πµν(x, x′) denotes the two-point correlator, i.e., the vacuum polarization tensor.

The matter in the wall modifies the ‘classical’ first part of the Lagrangian (2.1) by

boundary conditions such that the photon classically cannot cross the wall. On the one-

loop level, the vacuum polarization tensor (or, more precisely, the contribution generated by

the minicharged particles) arises from the loop of minicharged particles shown in figure 2.

Since minicharged particles interact only very weakly with the matter of the wall, this part

of the vacuum polarization tensor remains essentially unaffected by the presence of the wall

and allows for a non-vanishing transition amplitude for photons through the wall. In the

following, we will calculate the transition amplitude caused by the polarization tensor in

the presence of boundary conditions arising from the wall.

If translational invariance holds for the fluctuations (not necessarily for the photon

field) the resulting polarization tensor satisfies Πµν(x, x′) = Πµν(x − x′). Together with

the Ward identity, this implies that the polarization tensor can be written in terms of a

single scalar function in momentum space,

Πµν(p) = PT,µν(p)Π(p), PT,µν(p) = gµν − pµpν

p2
. (2.2)

The metric is given by g = (−,+,+,+), such that p2 = −ω2 +p2. The equation of motion

resulting from (2.1) for transversal modes AT,µ = PT,µνA
ν reads in momentum space

(

p2 + Π(p)
)

AT(p) = 0. (2.3)

Here and in the following, we drop Lorentz indices, since our considerations are independent

of the polarization of the transversal mode. In this work, we consider a set-up where

translational invariance is broken for the photon field along the z axis. Hence, it is useful

to introduce the partial Fourier transforms (p2 = −ω2 + p2
⊥ + p2

z),

A(z,p⊥, ω) =

∫

dpz

2π
eizpz A(p), (2.4)

Π(z − z′,p⊥, ω) =

∫

dpz

2π
ei(z−z′)pz Π(p), (2.5)

in terms of which the equations of motion read

0 = (−ω2 + p2
⊥ − ∂2

z )AT(z,p⊥, ω) +

∫

dz′ Π(z − z′,p⊥, ω)AT(z′,p⊥, ω)

≡ (−ω2 + p2
⊥ − ∂2

z )AT(z,p⊥, ω) + j(z,p⊥, ω). (2.6)

In the last step, we have introduced the fluctuation-induced current j =
∫

ΠAT.

In the present work, we break translational invariance for the photon by a wall of

thickness d, infinitely extended into the x, y plane. The left side of the wall is put at z = 0,

the right side extends to z = d. The wall imposes boundary conditions on the photon field.

– 4 –



J
H
E
P
0
8
(
2
0
0
9
)
0
6
3

For instance, if the wall is perfectly conducting, a transverse photon propagating along the

z axis normal to the wall (p⊥ = 0) has to satisfy Dirichlet boundary conditions at the wall’s

surface, corresponding to vanishing transverse electric components on the conductor. For

a wave packet a(ω), the free equation of motion for the left half-space z ≤ 0 is solved by

AT(z, ω) = a(ω) sin(ωz), z < 0. (2.7)

In absence of any external photon field to the right of the wall z ≥ d, the induced current

in this region of space is

j(z > 0, ω) =

∫ 0

−∞
dz′ Π(z − z′, ω) a(ω) sin(ωz′). (2.8)

We observe that the quantum nonlocalities, or loosely speaking, the spatial extent of the

fluctuations described by the two-point correlator Π(x, x′) give rise to a nonvanishing source

on the right hand side of the wall.

The solution to the free Green’s function equation,

(−ω2 − ∂2
z )G(z − z′) = δ(z − z′), (2.9)

for z > z′ reads

G(z − z′) =
i

2ω
eiω(z−z′), (2.10)

such that the induced outgoing wave to the right of the wall is given by

Aind(z ≫ d, ω) = i

∫ ∞

d

dz′
eiω(z−z′)

2ω
j(z′, ω). (2.11)

In the present case, the polarization of Aind is identical to that of the incident photon.

In (2.11), we have confined ourselves to the outgoing right-moving far field at z ≫ d. Near

the wall, the Green’s function in the presence of the boundary at z = d has to be used

instead; the latter in addition contains left-moving components which are of no relevance

in the following.

The transition probability for a photon to cross the wall is given by the square of the

photon amplitude normalized to the initial amplitude. Using eqs. (2.11) and (2.8), we find,

Pγ→γ = lim
z→∞

∣

∣

∣

∣

Aind(z, ω)

a(ω)

∣

∣

∣

∣

2

=
1

4ω2

∣

∣

∣

∣

∫ ∞

d

dz′
∫ 0

−∞
dz′′Π(z′ − z′′, ω) sin(ωz′′) exp(−iωz′)

∣

∣

∣

∣

2

.

(2.12)

Generalizations to different boundary conditions for the photon field at the barrier

are straightforward.

3 Photon transition amplitude

Let us assume the existence of minicharged particles that couple weakly to photons but

not directly to matter which the wall consists of. For minimally coupled minicharged Dirac

– 5 –
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fermions, the well-known results from QED can immediately be taken over. We begin with

the well-known representation2 of the polarization tensor in QED, see, e.g., [12], where3

Π(p) = − α̃

3π
p4

∫ 1

0
dv

v2(3 − v2)

1 − v2

1

p2 + 4m2

1−v2 − iǫ
. (3.1)

Here, α̃ is the analogue of the QED coupling constant including the minicharge ε ≪ 1,

α̃ = ε2α, α ≃ 1/137.

The pz integral can be done by using the residue theorem, exhibiting two poles: one

below and one above the real pz axis. Since we are eventually interested in the polarization

tensor for z > 0, we close the contour in the upper pz half plane and pick up the residue of

the corresponding pole. Let us carefully distinguish between the following two cases: For

large frequencies, ω2 > p2
⊥ + 4m2

1−v2 , the pole occurs close to the real axis at

pz =

√

ω2 − p2
⊥ − 4m2

1 − v2
+

1

2

iǫ
√

ω2 − p2
⊥ − 4m2

1−v2

+ O(ǫ2) (3.2)

For small frequencies, ω2 < p2
⊥ + 4m2

1−v2 , the pole lies on the imaginary axis,

pz = i

√

p2
⊥ +

4m2

1 − v2
− ω2. (3.3)

As a result, we obtain for the two cases:

Π(z,p⊥, ω) = −i
α̃

3π

∫ 1

0
dv

v2(3 − v2)

1 − v2

(

4m2

1 − v2

)2

·



























1

2

r

ω2−p
2

⊥
− 4m

2

1−v
2

e
iz

r

ω2−p
2

⊥
− 4m

2

1−v
2

for ω2 > p2
⊥ + 4m2

1−v2

1

2i

r

p
2

⊥
+ 4m

2

1−v
2
−ω2

e
−z

r

p
2

⊥
+ 4m

2

1−v
2
−ω2

for ω2 < p2
⊥ + 4m2

1−v2

. (3.4)

This representation can now be plugged into eq. (2.12). For simplicity, we confine ourselves

to photon propagation parallel to the z axis with p⊥ = 0. For frequencies below threshold,

ω < 2m, only the second case occurs; above threshold, both cases contribute. Using

the substitutions

λ =

√

1 − 4m2

ω2(1 − v2)
, κ =

√

4m2

ω2(1 − v2)
− 1, (3.5)

for the first and second case, respectively, the induced outgoing photon field can be com-

puted from eqs. (2.8) and (2.11), yielding the representation

Aind(ω) =
iα̃

6π
a(ω)eiω(z−d)

(

f>(ω/m,ωd) + f<(ω/m,ωd)
)

, (3.6)

2In the appendix, we check our calculation by using the Feynman parameter representation of the

polarization tensor.
3Our conventions for Π(p) differ from those of [12] by an additional factor of p

2.

– 6 –
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where we have introduced the dimensionless auxiliary functions

f>(ω/m,ωd) =

∫ Re
q

1− 4m
2

ω
2

0

dλ

1 − λ

√

1 − λ2 − 4m2

ω2

√
1 − λ2

(

1 − λ2 + 2m2

ω2

)

1 − λ2
eiωdλ, (3.7)

f<(ω/m,ωd) =

∫ ∞

Re
q

4m
2

ω
2
−1

dκ

i + κ

√

1 + κ2 − 4m2

ω2

√
1 + κ2

(

1 + κ2 + 2m2

ω2

)

1 + κ2
e−ωdκ. (3.8)

These auxiliary functions can be numerically evaluated to a high precision with standard

routines. Insertion of the result into eq. (2.12) yields the final tunneling probability,

Pγ→γ =
α̃2

36π2

∣

∣f> + f<

∣

∣

2
, (3.9)

which will be discussed in various limiting cases in the following.

3.1 Small-frequency limit ω ≪ 2m

For all frequencies ω < 2m, we have f> = 0 such that only the function f< contributes.

Rescaling the integration variable κ such that the lower bound of the f< integral is unity,

the limit ω ≪ 2m reduces to a simpler representation:

f<(ω ≪ m) =

∫ ∞

1

dκ

κ4

√

κ2 − 1

(

κ2 +
1

2

)

e−2mdκ. (3.10)

In the limit md ≫ 1 corresponding to thick walls compared to the Compton wavelength of

the minicharged particle, the asymptotics of the integral can be extracted by a saddle-point

approximation, yielding

f<(ω ≪ 2m,md ≫ 1) ≃ 3
√

π

8(md)
3

2

e−2md,

Pγ→γ(md ≫ 1, ω ≪ 2m) ≃ α̃2

256π

e−4md

(md)3
=

ε4α2

256π

e−4md

(md)3
. (3.11)

This results exhibits a typical exponential decrease with an exponent which is linear in the

wall thickness d, as is familiar from quantum mechanical tunneling processes. In figure 4,

we compare the approximate result, eq. (3.11), for the transition probability of photons

through the wall to an exact numerical evaluation of the integrals. Already for modest

values of the wall thickness, m d & 20, we find reasonable quantitative agreement on the

level of 25%.

The analogy to quantum mechanical tunneling becomes even more transparent in the

worldline approach to quantum field theory [13]. Here, quantum field theoretic propagators

are represented by quantum mechanical path integrals in a fictious time. These paths can

be thought of as Lorentz-invariant spacetime trajectories of the quantum fluctuations. In

the above limit of small photon frequency and large wall thickness, these path integrals can

be approximated semiclassically, resulting in minicharged-particle propagators of the form

G(x− y) ≃
√

π/[2m(x − y)] exp[−m(x− y)]. As the probability amplitude for our process

– 7 –
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Figure 4. Ratio of the approximate expression for the transition probability Pγ→γ(d) of a photon

through a wall of thickness d given in eq. (3.11) to the exact evaluation of eq. (3.10). We have used

ω = 0, m = 1.

involves two propagators, the probability (3.11), being the square of the amplitude, decays

with exp(−4md).

The important difference to quantum mechanical tunneling is that it is not a wave

function of an on-shell particle that penetrates the barrier. Instead, the existence of and

the interaction with off-shell intermediate states are necessary to give rise to this new

tunneling phenomenon. This is somewhat similar to the tunneling picture of Schwinger

pair production [14–16]: here, the production of charged particles is facilitated by an

external electric field that assists fluctuations to tunnel out of the vacuum through the

spectral gap to on-shell asymptotic states. Of course, an important difference remains, as

there is a clear distinction in our case between the intermediate fluctuation states and the

asymptotic photons.

Let us now consider the limit of the wall thickness being small compared to the Comp-

ton wavelength of the minicharged particle, md ≪ 1. Here, the auxiliary function f<

diverges logarithmically. As this limit probes the vacuum polarization at larger and larger

momentum scales, this logarithmic behavior corresponds to the logarithmic running of the

gauge coupling above the mass threshold:

f<(md ≪ 1) ≃ ln

(

1

2md

)

,

Pγ→γ(ω ≪ 2m,md ≪ 1) ≃ α̃2

36π2
ln2(2md)=

α2ε4

36π2
ln2(2md). (3.12)

For instance, for a wall thickness in the millimeter range, this limit applies to minicharged

particles with a mass below the meV scale, where the driving photon frequency ω is chosen

even much below the meV scale.

– 8 –
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3.2 Large-frequency limit ω ≫ 2m

For larger frequencies ω > 2m, both auxiliary functions f> and f< contribute. Here,

analytic limits are more difficult to obtain, since cancelations between the two integrals

can occur.

For instance, the limit of a large wall thickness can be obtained from expanding f> in

eq. (3.7) with respect to the upper bound; contributions from the lower bound are canceled

by corresponding contributions from f<, yielding for the probability

Pγ→γ =
α2ε4ω3

512πm3(dm)3
for

2m

ω
(md) ≫ 1. (3.13)

In the case of small masses, we note that the approximation is valid only at fairly large

wall thickness, rendering this limit phenomenologically less relevant.

For not too large ω & 2m, the small-wall-thickness limit is dominated by f< which

reduces to

f<(ω & 2m,ωd ≪ 1) ≃
∫ ∞

0

dκ

i + κ
e−ωdκ = eiωdΓ(0, iωd) → ln

(

1

ωd

)

− γ − i
π

2
+ O(ωd).

(3.14)

Again, the limit of small wall thickness probes the high-momentum structure of vacuum

polarization, yielding a logarithmic increase of the tunneling probability,

Pγ→γ(ω & 2m,ωd ≪ 1) ≃ α2ε4

36π2
ln2

(

1

ωd

)

. (3.15)

Note that the mass m of the fluctuating particle drops out in this limit.

Of particular phenomenological interest is the limit ω ≫ 2m for ωd ∼ O(1). This limit

is again purely dominated by the function f> which develops a logarithmic behavior at the

upper bound of the integral. Numerically, we find

|f>(ω ≫ 2m,ωd ∼ O(1)) + f<(ω ≫ 2m,ωd ∼ O(1))| ≃ a ln
ω

2m
− b, a ≃ 2, (3.16)

and b is an ωd-dependent offset; e.g., b ≃ 0, 2.3, 4.5 for ωd = 1, 10, 100. To leading order,

the tunnel probability is

Pγ→γ(ω ≫ 2m,ωd ∼ O(1)) ≃ α2ε4

36π2
a2 ln2 ω

2m
. (3.17)

The probability in this regime is plotted in figure 5 for the three values ωd = 1, 10, 100.

4 Discovery experiments

Tunneling of the 3rd kind for photons generally leads to a light-shining-through-a-wall

signature. As discussed in the preceding section, this signature decreases drastically with

increasing thickness of the wall. In order to have a chance of observing tunneling of the

3rd kind, a suitably thin wall is required that provides at the same time for a sufficient

shielding against the ordinary transmission of photons. The higher the photon energy the

bigger the thermal stress on the wall and the greater the possibility of accidental leakage

of photons through the wall. This suggests either the use of walls which are as perfectly

reflecting as possible for a specifically selected photon frequency or the use of low or zero

frequency photons as, for instance, provided by a constant magnetic field.

– 9 –
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Figure 5. Transition probability in the large frequency limit for ω = 1 and d = 1, 10, 100 (from

top to bottom; black, blue, red). For small masses the probability diverges as a logarithm squared

as given in eq. (3.17).

4.1 Optical experiment

Let us first consider an experiment of the standard light-shining-through-a-wall type, where

an optical laser is shone against a wall and a detector for optical photons is placed behind

the wall. For our estimate, we assume that the wall is almost perfectly reflecting for the

photon frequency ω with zero transmissivity. This may be achieved by thin-layer optical

coating of a thin substrate. For an optical wavelength in the ω ∼ O(1eV) regime, a wall

of O(10 . . . 100µm) implying ωd ≃ O(10 . . . 100) might be realizable.

This set up is most sensitive for small masses much below the optical frequency scale.

For ω ≫ 2m, the outgoing photon rate behind the wall is given by (cf. eq. (3.17) and

figure 5)

nout = ninPγ→γ ≃ 6 × 10−7 nin ε4 ln2 ω

2m
, (4.1)

where we have assumed a 100% detection efficiency. Even for strong continuous lasers

with nin ∼ O(1020 . . . 1025)/s, it is clear that current laboratory bounds [6, 17]4 on ε below

the ε ∼ 10−6 range are not immediately accessible, unless the mass of the minicharged

particle is exponentially small5.

4.2 Superconducting box experiment

A constant field, i.e. ω = 0, could be realized in the form of a “superconducting box”

experiment as suggested for the search for hidden-sector photons in [11]. The basic setup

of such an experiment is depicted in figure 6. Outside the shielding, we have a strong

magnetic field. Upon entering a Type-I superconductor the ordinary electromagnetic field

4Astrophysical bounds are even stronger, ǫ . 10−14 [18], but they may be evaded in some models [19].
5It should be noted, however, that for very small masses corresponding to Compton wavelengths much

larger than the typical spatial dimensions of the experiment in question our approximations, in particular

the use of plane waves, become unreliable.
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Figure 6. Illustration of the principle of a “superconducting box” experiment. Ordinary magnetic

fields are shielded by a Type-I superconductor. However, the superconductor can be penetrated

by the virtual minicharged particle pairs which generate a non-vanishing magnetic field inside the

shielding. This field can then be measured by a highly sensitive magnetometer.

is exponentially damped with a length scale given by the London penetration depth λLon.

Behind the superconducting shield, the effective current induced by tunneling of the 3rd

kind generates a magnetic field that can be detected by a magnetometer. Since the magne-

tometer measures directly the field (instead of the intensity or power output) the signal is

proportional to the transition amplitude and therefore to the coupling squared, ε2, instead

of being proportional to ε4.

Using a static magnetic field instead of a wave and replacing the mirror with the

superconductor requires two minor modifications of the previous calculation. First, for a

static magnetic field, B0, impinging on the superconductor the field on the left hand side

of the wall is constant. Accordingly the sin(ωx) in eq. (2.8) has to be replaced by 1 such

that the current to the right of the wall now reads,

jconst(z > 0) =

∫ 0

−∞
dz′ Π(z − z′, ω)B0. (4.2)

Second, for a constant field we cannot use the Green’s function (2.10) anymore. Instead,

it is straightforward to directly solve the appropriate differential equation,

∂2
zB(z) = jconst(z). (4.3)

In the following, we assume that the thickness of the superconducting shielding and the

Compton wavelength of the minicharged particle are much larger than the London pene-

tration depth d, 1/m ≫ λLon. Then, the relevant part of the induced current is between

d and ∞. This implies that B(d) = −B(∞). The second required boundary condition is

that the field approaches a constant for z → ∞.6 Using this, we find

B(z) − B(d) =

∫ z

d

dz′
∫ z′

d

dz′′jconst(z
′′) − (z − d)

∫ ∞

d

dz′jconst(z
′). (4.4)

6Here, we have assumed that the system is homogeneous in the x, y direction. Furthermore, the limit of
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Figure 7. Amplitude for a constant magnetic field to leak into a volume shielded by a supercon-

ductor. The black curve corresponds to a numerical evaluation of eq. (4.5), the blue curve gives the

approximate result eq. (4.7) and the red curve gives the approximate result eq. (4.8).

We can again use the parametrization of the propagator given in eq. (3.4). For a

constant ω = 0 field only the small frequency case contributes. If we measure the field suf-

ficiently far behind the shielding the field strength will be close to the constant asymptotic

value B(∞). Following similar steps as in section 3, we find for the normal amplitude of

the magnetic field behind the wall,

Ampγ→γ =
B(∞)

B0
=

αε2

6π
g(md), (4.5)

where

g(md) =
1

2

∫ ∞

1

dτ

τ4

√

τ2 − 1(1 + 2τ2) exp(−2mdτ). (4.6)

This amplitude is plotted in figure 7 as a function of the wall thickness (black line).

For dm ≫ 1 the transition amplitude can be approximated by,

|Ampγ→γ | =

∣

∣

∣

∣

B(∞)

B0

∣

∣

∣

∣

=
αε2

16
√

π

exp(−2dm)

(dm)
3

2

for dm ≫ 1. (4.7)

This is plotted as the blue line in figure 7. For dm ≪ 1 we find again the appropriate

logarithmic divergence

|Ampγ→γ | =

∣

∣

∣

∣

B(∞)

B0

∣

∣

∣

∣

=
αε2

6π

(

log(dm) +
5

6
+ γ

)

for dm ≪ 1. (4.8)

This is shown as the red line in figure 7.

Let us now estimate the sensitivity of such an experiment. From figure 7 we can clearly

see that the sensitivity will drop rapidly if dm ≫ 1. On the other hand for dm . 0.02

infinite extension of this homogeneity has to be taken before the limit z → ∞. In a real experiment, the

boundary condition can be set at large z values which are still smaller than the extent of the field in x, y

direction.
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we find |Ampγ→γ | > 0.1αε2. Magnetic field strengths B0 of the order (1 − 5)T can be

reached in the laboratory. However, we have to stay below the critical field strength of

the superconductor in order to prevent penetration of the superconductor by the magnetic

field. In most materials, this ranges between 0.01T and 0.2T [20] although fields as high

as 1 T can be shielded in certain cases (cf., e.g. [21]). Modern magnetometers [22–24] can

detect magnetic fields as low as Bdetect = 5×10−18 T; therefore, using Bdetect = 1×10−13 T

seems relatively conservative. Accordingly we can expect a sensitivity in the ε ∼ 10−4 to

2×10−7 range7. The latter is in the ball park of the current best laboratory bounds [6, 17].

Finally, let us find out which mass scales for the minicharged particles we can probe in

the experiment. Above we have already argued that we can only achieve good sensitivity

as long as dm . 0.02. On the other side we must have d ≫ λLon in order to suppress the

ordinary leakage of magnetic fields through the superconducting shielding. Typical London

penetration depths λLon = 1/MLon are of the order of (20 − 100) nm (cf,. e.g., [25]). To

avoid fields leaking directly through the shielding (without having to convert into hidden

fields) at the 10−20 level we need d & 50λLon ∼ (1 − 5)µm. The requirement m . 0.02/d

then allows, in principle, to search for masses up to (0.8−4)meV. With a shielding thicker

than the minimal required size the experiment will be sensitive only to smaller masses.

5 Conclusions

In this note we have discussed a new type of tunneling process of particles through a barrier.

Whereas ordinary quantum mechanical tunneling allows the particle to pass through a

barrier of finite width and height, field theory with different particle species can allow

particles to circumnavigate a barrier by converting into a real particle of a different species

that does not interact with the barrier (cf. figure 1). As argued in this note, quantum field

theory allows to circumnavigate the barrier by conversion into virtual particles that do not

interact with the wall as depicted in figure 2. As an explicit example of this process we

have calculated the tunneling probability via this “tunneling of the 3rd kind” for the case

of photons coupled to minicharged particles.

From a formal perspective, this quantum field theoretic tunneling becomes reminiscent

to quantum mechanical tunneling in the limit where a semiclassical approximation can be

applied to the fluctuating propagators. Here, the tunneling probability follows a character-

istic exponential behavior with an exponent that increases linearly with the wall thickness.

By contrast, for high frequencies, our tunneling phenomenon has no quantum mechanical

analogue anymore. Contrary to quantum mechanics where any finite barrier is eventually

overcome in a classical sense for increasing energy, our (idealized) wall remains a potential

barrier for all frequencies.8 In particular, in the limit of small wall thickness, we observe

a logarithmic increase of the tunneling probability. This dependence is characteristic for

7It should be noted that the shielding of a O(0.1 T) magnetic field down to O(10−18 T) is certainly an

experimental challenge. However, shielding on this level has been achieved [22].
8Of course, any real matter becomes translucent beyond a frequency scale typically set by the plasma

frequency.
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a quantum field theory phenomenon, as it probes the structure of vacuum polarization at

high fluctuation momenta.

Experimentally, tunneling of the 3rd kind could be observed as a “light-shining-

through-a-wall” signature. In contrast to the process in classical field theory where real

particles traverse the wall, tunneling of the 3rd kind would lead to a strong dependence on

the wall thickness.
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A Photon transition amplitude using the Feynman-parameter represen-

tation of the polarization tensor

As a check of the derivation of the transition amplitude given in the main text we can use

a different representation of the polarization tensor as given, e.g., in [26],

Π(p2) = −p2 2αε2

π

∫ 1

0
dxx(1 − x) log

(

m2

m2 − x(1 − x)p2

)

, (A.1)

where the ε2 accounts for the small charge ε of the minicharged particles.

We now have to perform the partial Fourier transform of this expression according to

eq. (2.5) and insert it into eq. (2.12). The details of this calculation depend on wether we

are at small frequency regime ω ≪ 2m or at large frequencies ω ≫ 2m. We will now study

these two cases separately.

A.1 Small-frequency limit ω ≪ 2m

The first step in calculating the transition probability is to obtain the partial Fourier

transform (2.5) of the polarization tensor given in (A.1) for p⊥ = 0,

Π(z, ω) =

∫ ∞

−∞
dpz exp(izpz)Π(ω2 − p2

z). (A.2)

To perform this integration we continue pz into the complex plane Pz and integrate

along the contour shown in figure 8. The relevant parts of this contour are the two bits

parallel to the imaginary axis. Together they contribute

Π(z, ω) = 2

∫ ∞

√
4m2−ω2

dPz

2π
exp(−Pzz)Im

(

Π(ω2 + P 2 + iǫ)
)

. (A.3)

We therefore need the imaginary part of Π(p2 + iǫ). Using eq. (A.1) one finds,

Im
(

Π(p2 ± iǫ)
)

= ∓ε2 α

3
p2

√

1 − 4m2

p2

(

1 +
2m2

p2

)

. (A.4)
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i
√

4m2 − ω2 ≈ 2im

Pz

Figure 8. Integration contour for the small frequency limit ω ≪ 2m.

For
√

4m2 − ω2 z ≫ 1, we can approximate the integral (A.3) by,

Π(z, ω)=−αε2 m(4m2 − ω2)
1

4

√
2πz

3

2

exp
(

−
√

4m2 − ω2z
)

for
√

4m2 − ω2 z ≫ 1 (A.5)

=−αε2

√
π

m
3

2

z
3

2

exp(−2mz) for ω → 0.

The accuracy of this approximation is better than 15% for
√

4m2 − ω2 z & 40. Inserting

this expression into eq. (2.12) we find,

Pγ→γ=
α2ε4

512π

√
4m2 − ω2

d3m4
exp

(

−2d
√

4m2 − ω2
)

for
√

4m2 − ω2 d ≫ 1 (A.6)

=
α2ε4

256π

exp(−4dm)

(dm)3
for ω → 0.

This agrees with the result found in eq. (3.11).

A.2 High-frequency limit ω ≫ 2m

The strategy for the high frequency limit is essentially the same as at low frequencies.

However, the cut in the complex plane is somewhat more complicated as can be seen from

figure 9. The essential difference to the low frequency case is that the branch cut extends to

the real axis. Therefore, one has to properly take the poles of the propagators into account.

The usual iǫ prescription for the propagators prescribe that the integration path is along

the red line in figure 9. As can be seen from the figure, we have to close the integration

contour along the black paths in order to avoid enclosing the cut inside the contour. In

order to arrive at the red path, we then have to add the (finite) blue paths.
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ω2 − 4m2 ≈ ω−

√
ω2 − 4m2 ≈ −ω

Pz

Figure 9. Integration contour for the large frequency limit ω ≫ 2m. The iǫ prescription requires

us to integrate along the red path. However, to avoid enclosing the cuts we have to close the contour

along the black curves. We then have to add the two blue parts to recover the desired integral.

The essential contributions to the integral for the Fourier transform are then again the

parts parallel to the imaginary axis and the blue paths,

Π(z, ω) = 2

∫ ∞

0

dPz

2π
Im

(

Π(ω2 + P 2
z + iǫ)

)

exp (−Pzz) (A.7)

+2i

∫

√
ω2−4m2

0

dpz

2π
Im

(

Π(ω2 − p2
z + iǫ)

)

exp (ipzz) .

Extracting again the leading order behavior for large distances we find,

Π(z, ω) = i
(1 + i)

2
√

π
αε2 m(ω2 − 4m2)

1

4

z
3

2

exp
(

i
√

ω2 − 4m2 z
)

for
2m2

ω
z ≫ 1. (A.8)

We note that for small masses the approximation is valid only at fairly large distances.

Inserting this into eq. (2.12), we obtain the transition probability,

Pγ→γ =
α2ε4ω3

512πm3(dm)3
for

2m2

ω
d ≫ 1. (A.9)
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